Lecture Notes in Computer Science 4436

نویسندگان

  • Gerhard Goos
  • Juris Hartmanis
  • Jan van Leeuwen
  • David Hutchison
  • Josef Kittler
  • Jon M. Kleinberg
  • John C. Mitchell
  • Gerhard Weikum
  • Christopher R. Stephens
  • Marc Toussaint
  • Darrell Whitley
  • Peter F. Stadler
چکیده

Geometric crossover is a representation-independent generalization of traditional crossover for binary strings. It is defined in a simple geometric way by using the distance associated with the search space. Many interesting recombination operators for the most frequently used representations are geometric crossovers under some suitable distance. Showing that a given recombination operator is a geometric crossover requires finding a distance for which offspring are in the metric segment between parents. However, proving that a recombination operator is not a geometric crossover requires excluding that one such distance exists. It is, therefore, very difficult to draw a clear-cut line between geometric crossovers and non-geometric crossovers. In this paper we develop some theoretical tools to solve this problem and we prove that some well-known operators are not geometric. Finally, we discuss the implications of these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progress in Cryptology - AFRICACRYPT 2011 - 4th International Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings

information security practice and experience 10th international conference ispec 2014 fuzhou china may 5-8 2014 proceedings lecture notes in computer science security and cryptology PDF advances in cryptology-asiacrypt 96 international conference on the theory and applications of crypotology and information security kyongju lecture notes in computer science PDF image analysis 17th scandinavian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008